上一頁下一頁
  • P1230235.jpg

    P1230235

  • P1230236.jpg

    P1230236

  • P1230237.jpg

    P1230237

  • P1230238.jpg

    P1230238

  • P1230239.jpg

    P1230239

  • P1230240.jpg

    P1230240

  • P1230241.jpg

    P1230241

  • P1230242.jpg

    P1230242

  • P1230243.jpg

    P1230243

  • P1230244.jpg

    P1230244

  • P1230245.jpg

    P1230245

  • P1230246.jpg

    P1230246

  • P1230247.jpg

    P1230247

  • P1230248.jpg

    P1230248

  • P1230251.jpg

    P1230251

  • P1230252.jpg

    P1230252

  • P1230253.jpg

    P1230253

  • P1230257.jpg

    P1230257

  • P1230258.jpg

    P1230258

  • P1230259.jpg

    P1230259

  • P1230260.jpg

    P1230260

  • P1230261.jpg

    P1230261

  • P1230262.jpg

    P1230262

  • P1230264.jpg

    P1230264

  • P1230265.jpg

    P1230265

  • P1230266.jpg

    P1230266

  • P1230267.jpg

    P1230267

  • P1230268.jpg

    P1230268

  • P1230269.jpg

    P1230269

  • P1230272.jpg

    P1230272

  • P1230273.jpg

    P1230273

  • P1230274.jpg

    P1230274

  • P1230275.jpg

    P1230275

  • P1230276.jpg

    P1230276

  • P1230278.jpg

    P1230278

  • P1230279.jpg

    P1230279

  • P1230280.jpg

    P1230280

  • P1230281.jpg

    P1230281

  • P1230282.jpg

    P1230282

  • P1230283.jpg

    P1230283

  • P1230285.jpg

    P1230285

  • P1230286.jpg

    P1230286

  • P1230287.jpg

    P1230287

  • P1230290.jpg

    P1230290

  • P1230291.jpg

    P1230291

  • P1230292.jpg

    P1230292

  • P1230293.jpg

    P1230293

  • P1230294.jpg

    P1230294

  • P1230296.jpg

    P1230296

  • P1230297.jpg

    P1230297

  • P1230298.jpg

    P1230298

  • P1230299.jpg

    P1230299

  • P1230300.jpg

    P1230300

  • P1230301.jpg

    P1230301

  • P1230303.jpg

    P1230303

  • P1230304.jpg

    P1230304

  • P1230305.jpg

    P1230305

  • P1230306.jpg

    P1230306

  • P1230307.jpg

    P1230307

  • P1230308.jpg

    P1230308

  • P1230309.jpg

    P1230309

  • P1230310.jpg

    P1230310

  • P1230311.jpg

    P1230311

  • P1230313.jpg

    P1230313

  • P1230314.jpg

    P1230314

  • P1230315.jpg

    P1230315

  • P1230316.jpg

    P1230316

  • P1230317.jpg

    P1230317

  • P1230318.jpg

    P1230318

  • P1230319.jpg

    P1230319

  • P1230320.jpg

    P1230320

  • P1230321.jpg

    P1230321

  • P1230322.jpg

    P1230322

  • P1230323.jpg

    P1230323

  • P1230324.jpg

    P1230324

  • P1230325.jpg

    P1230325

  • P1230327.jpg

    P1230327

  • P1230328.jpg

    P1230328

  • P1230329.jpg

    P1230329

  • P1230330.jpg

    P1230330

上一頁下一頁

您尚未登入,將以訪客身份留言。亦可以上方服務帳號登入留言

其他選項
  • 葉青峻
    葉青峻 2021/03/10 10:26

    常見的半導體材料有矽、鍺、砷化鎵等
    /
    晶片測試
    晶片處理高度有序化的本質增加了對不同處理步驟之間度量方法的需求。晶片測試度量裝置被用於檢驗晶片仍然完好且沒有被前面的處理步驟損壞。如果If the number of dies—the 積體電路s that will eventually become chips—當一塊晶片測量失敗次數超過一個預先設定的閾值時,晶片將被廢棄而非繼續後續的處理製程。
    /
    晶片測試
    晶片處理高度有序化的本質增加了對不同處理步驟之間度量方法的需求。晶片測試度量裝置被用於檢驗晶片仍然完好且沒有被前面的處理步驟損壞。如果If the number of dies—the 積體電路s that will eventually become chips—當一塊晶片測量失敗次數超過一個預先設定的閾值時,晶片將被廢棄而非繼續後續的處理製程。

    /
    步驟列表

    晶片處理
    濕洗
    平版照相術
    光刻Litho
    離子移植IMP
    蝕刻(干法蝕刻、濕法蝕刻、電漿蝕刻)
    熱處理
    快速熱退火Annel
    熔爐退火
    熱氧化
    化學氣相沉積 (CVD)
    物理氣相沉積 (PVD)
    分子束磊晶 (MBE)
    電化學沉積 (ECD),見電鍍
    化學機械平坦化 (CMP)

    IC Assembly and Testing 封裝測試
    Wafer Testing 晶片測試
    Visual Inspection外觀檢測
    Wafer Probing電性測試
    FrontEnd 封裝前段
    Wafer BackGrinding 晶背研磨
    Wafer Mount晶圓附膜
    Wafer Sawing晶圓切割
    Die attachment上片覆晶
    Wire bonding焊線
    BackEnd 封裝後段
    Molding模壓
    Post Mold Cure後固化
    De-Junk 去節
    Plating 電鍍
    Marking 列印
    Trimform 成形
    Lead Scan 檢腳
    Final Test 終測
    Electrical Test電性測試
    Visual Inspection光學測試
    Baking 烘烤
    /
    有害材料標誌

    許多有毒材料在製造過程中被使用。這些包括:

    有毒元素摻雜物比如砷、硼、銻和磷
    有毒化合物比如砷化三氫、磷化氫和矽烷
    易反應液體、例如過氧化氫、發煙硝酸、硫酸以及氫氟酸

    工人直接暴露在這些有毒物質下是致命的。通常IC製造業高度自動化能幫助降低暴露於這一類物品的風險。
    /
    Device yield

    Device yield or die yield is the number of working chips or dies on a wafer, given in percentage since the number of chips on a wafer (Die per wafer, DPW) can vary depending on the chips' size and the wafer's diameter. Yield degradation is a reduction in yield, which historically was mainly caused by dust particles, however since the 1990s, yield degradation is mainly caused by process variation, the process itself and by the tools used in chip manufacturing, although dust still remains a problem in many older fabs. Dust particles have an increasing effect on yield as feature sizes are shrunk with newer processes. Automation and the use of mini environments inside of production equipment, FOUPs and SMIFs have enabled a reduction in defects caused by dust particles. Device yield must be kept high to reduce the selling price of the working chips since working chips have to pay for those chips that failed, and to reduce the cost of wafer processing. Yield can also be affected by the design and operation of the fab.

    Tight control over contaminants and the production process are necessary to increase yield. Contaminants may be chemical contaminants or be dust particles. "Killer defects" are those caused by dust particles that cause complete failure of the device (such as a transistor). There are also harmless defects. A particle needs to be 1/5 the size of a feature to cause a killer defect. So if a feature is 100 nm across, a particle only needs to be 20 nm across to cause a killer defect. Electrostatic electricity can also affect yield adversely. Chemical contaminants or impurities include heavy metals such as Iron, Copper, Nickel, Zinc, Chromium, Gold, Mercury and Silver, alkali metals such as Sodium, Potassium and Lithium, and elements such as Aluminum, Magnesium, Calcium, Chlorine, Sulfur, Carbon, and Fluorine. It is important for those elements to not remain in contact with the silicon, as they could reduce yield. Chemical mixtures may be used to remove those elements from the silicon; different mixtures are effective against different elements.

    Several models are used to estimate yield. Those are Murphy's model, Poisson's model, the binomial model, Moore's model and Seeds' model. There is no universal model; a model has to be chosen based on actual yield distribution (the location of defective chips) For example, Murphy's model assumes that yield loss occurs more at the edges of the wafer (non-working chips are concentrated on the edges of the wafer), Poisson's model assumes that defective dies are spread relatively evenly across the wafer, and Seeds's model assumes that defective dies are clustered together.[25]

    Smaller dies cost less to produce (since more fit on a wafer, and wafers are processed and priced as a whole), and can help achieve higher yields since smaller dies have a lower chance of having a defect. However, smaller dies require smaller features to achieve the same functions of larger dies or surpass them, and smaller features require reduced process variation and increased purity (reduced contamination) to maintain high yields. Metrology tools are used to inspect the wafers during the production process and predict yield, so wafers predicted to have too many defects may be scrapped to save on processing costs.[26]

相片最新留言

此相簿內的相片目前沒有留言

相簿列表資訊

最新上傳:
2018/09/09
全站分類:
國內旅遊
本日人氣:
0
累積人氣:
182